Rail sections specified to be installed on curves having a radius of 5 feet (1.5 m) to 150 feet $(45.7 \mathrm{~m})$ can be curved in our fabricating facilities prior to delivery.

Rail can be curved either convex or concave as required. Terms convex or concave refer to the direction curved, outward or inward, relative to the traffic face of the rail.

The diagrams \& chart provide data for locating posts and curves. For assistance, please contact our Sales Office.

Rise (D) (inches)	$\begin{gathered} \text { Radius (R) } \\ (\text { feet }) \end{gathered}$	Rise (D) (MM)	Radius (\mathbf{R}) (M)
41	5	1041	1.5
36	6	914	1.8
28	8	711	2.4
26	9	660	2.7
22	10	559	3.1
20	12	508	3.7
18	13	457	4.0
16	15	406	4.6
14	16	356	4.9
11 5/8	20	295	6.1
$91 / 2$	25	241	7.6
$73 / 4$	30	197	9.1
$63 / 4$	35	171	10.7
6	40	152	12.2
$51 / 4$	45	133	13.7
4 5/8	50	117	15.2
$41 / 4$	55	108	16.8
4	60	102	18.3
3 5/8	65	92	19.8
3 5/8	70	86	21.3
$31 / 4$	75	83	22.9
3	80	76	24.4
$23 / 4$	85	70	25.9
2 5/8	90	67	27.4
$21 / 2$	95	64	29.0
2 5/8	100	60	30.5
2 5/8	110	54	33.5
2	120	51	36.6
$13 / 4$	130	44	39.6
1 5/8	140	41	42.7
$11 / 2$	150	38	45.7

TO FIND THE RADIUS FOR A CURVED RAIL:

Step 1: Starting at the last post in the straight run (point A), lay cloth tape along the path that the curved guard rail will follow.
Step 2: Mark-off two points along the curved cloth tape: One at $6^{\prime} 3^{\prime \prime}$, or 1905 mm (point B) and the second at 12' -6 " or 3810 mm (point C).
Step 3: Pull string directly from starting point (point A) to the second mark-off point (point C).

Step 4: Measure from the first mark-off point (point
B) over to the mid-point of the taut string. This measurement (D) is the Rise.
Step 5: Check the chart to find the Radius (R), given the Rise (D). Example: a Rise of 4 inches (102 mm) would result in a radius of 60 feet (18.3 m).

